Deprecated: Creation of dynamic property db::$querynum is deprecated in /www/wwwroot/hbjhkj123.com/inc/func.php on line 1413

Deprecated: Creation of dynamic property db::$database is deprecated in /www/wwwroot/hbjhkj123.com/inc/func.php on line 1414

Deprecated: Creation of dynamic property db::$Stmt is deprecated in /www/wwwroot/hbjhkj123.com/inc/func.php on line 1453

Deprecated: Creation of dynamic property db::$Sql is deprecated in /www/wwwroot/hbjhkj123.com/inc/func.php on line 1454
直流输电系统可靠性指标和提高可靠性的措施_信号滤波器_bob苹果手机登录版_半岛·BOB官方网站

直流输电系统可靠性指标和提高可靠性的措施

时间: 2024-11-09 23:58:35 |   作者: 信号滤波器

产品详情

  

直流输电系统可靠性指标和提高可靠性的措施

  工程中加以应用就显得十分必要。在总结以往直流工程经验的基础上, 结合800 kV 特高压直流输电工程真实的情况, 提出提高特高压直流输电系统可靠性及可用率的措施。

  高压直流输电具有传输功率大, 线路造价低,控制性能好等优点, 是目前世界上发达国家作为高电压、大容量、长距离送电和异步联网的重要手段。在我国也因“西电东送, 南北互供, 全国联网”而成为电力建设的热点。直流输电工程是一个复杂的工程系统, 且多数情况下承担大容量、远距离输电和联网任务, 尤其对于800 kV 直流输电工程而言, 其电压等级高、输送容量大, 在电力系统中的地位十分重要, 因此对直流输电工程的可靠性要求很高。直流系统可靠性直接反映直流系统的系统模块设计、设备制造、工程建设以及运行等所有的环节的水平。通过直流系统可靠性分析, 可以提出改善工程可靠性的具体措施, 对新建工程提出较为合理的指标要求。本文在总结以往直流工程经验的基础上, 结合800 kV特高压直流输电工程真实的情况, 从工程实际方面出发, 提出了提高特高压直流输电系统可靠性及可用率的具体措施。

  可靠性是一个系统无故障连续运行能力的一种考量。直流输电工程的可靠性是指在规定的系统条件和环境条件下, 在规定的时间内传输一定能量的能力。直流输电系统的可靠性指标总计超过10项, 这里只介绍停运次数、降额等效停运小时、能量可用率、能量利用率等4 项主要可靠性指标[1]。

  停运次数: 包括由于系统或设备故障引起的强迫停运次数。对于常用的双极直流输电系统, 可分为单极停运, 以及由于同一原因引发的2 个极同时停运的双极停运。对于每个极有多个独立换流器的直流输电系统, 停运次数还可以统计到换流器停运。不同的停运代表对系统不同水平的扰动。降额等效停运小时: 直流输电系统由于全部或者部分停运或某些功能受损, 使得输送能力低于额定功率称为降额运行。

  降额等效停运小时是: 将降额运行维持的时间乘以一个系数, 该系数为降额运行输送损失的容量与系统最大连续可输送电容量之比。

  能量可用率: 衡量由于换流站设备和输电线路(含电缆)强迫和计划停运造成能量传输量限制的程度, 数学上定义为统计时间内直流输电系统各种状态下可传输容量乘以对应维持的时间的总和与最大允许连续传输容量乘以统计时间的百分比。

  能量利用率: 指统计时间内直流输电系统所输送的能量与额定输送容量乘以统计时间之比。

  直流输电系统整体的可靠性是和组成总系统的各个元件、系统的接线方式、控制保护、运行方式息息相关的。在对以往的直流输电工程可靠性分析的基础上能够正常的看到影响直流输电系统可靠性的因素主要有以下几个。

  高压直流输电与交流输电相比较的一个显著特点是能够最终靠对两端换流站的快速调节, 控制直流线路输送功率的大小和方向, 以满足整个交直流联合系统的运行要求, 也就是说直流输电系统的性能,极大地依赖于它的控制管理系统。提高控制管理系统的可靠性是提高直流输电系统可靠性的关键。提高直流输电控制管理系统可靠性的第一个任务就是加强自检覆盖率和准确率、采用多重化和分布式设计; 克服目前换流技术易换相失败的弊病, 避免多回直流落点相对集中时威胁极大的换相失败; 发展远方控制或无人值守的控制保护和通信技术, 提高效率、增强统一调度和各直流工程间的协调配合, 逐步加强系统稳定性[2]。

  现代高压直流工程中均采用12 脉动换流器作为基本换流单元, 以减少换流站所设置的特征谐波滤波器。每个12 脉动换流单元通常由2 个交流侧电压相位差30的6 脉动换流单元在直流侧串联而在交流侧并联所组成的, 换流变阀侧绕组, 一个是Y接线, 一个是△接线。换流阀通常有以下几种接线, 每极由多个12 脉动阀组串联; 型式3, 每极由多个12脉动阀组并联; 型式4, 每极由多个12 脉动阀组串联和并联的组合。

  从系统可靠性及系统可用率看, 型式1 两端换流站整个双极系统两极两端的4 个换流单元, 任何一个因故障停运, 将使系统损失一半输送能力; 型式2 每个换流单元可以单独控制, 实现不平衡运行, 任一个换流单元因故障退出运行, 仅失去25%的可用率。如果可控硅元件的制造水平能够完全满足每个极1个换流单元的要求, 那么, 分成2 个换流单元后, 不会大量增加元件数量, 在不考虑配套的换流变压器和开关的故障率的情况下, 极换流器故障次数增加很少。而且, 能够大大减少检修次数和时间。因此, 即使考虑增添设备的故障率, 系统的可用率还是相对增加,可靠性增强。

  换流变压器的接线方式主要是根据换流器的接线方式, 结合换流变的制造、安装和运输能力确定每个换流单元所对应的换流变压器类型及接线。每个换流单元连接的换流变压器的类型有以下几种[3]:

  从可靠性及可用率角度看, 假定不一样的换流变压器的故障率和平均修理时间是相同的, 则由于采用三相三绕组变压器台数最少, 因此对于一个换流单元, 它的能量可用率和可靠性最高。换流变压器的4 种类型接线) 可靠性最高, 类型( 2)及( 3) 次之, 类型( 4) 较低。因此, 在换流变的制造、安装和运输能力具备的条件下, 应优先采用类型( 1)以提高系统的可靠性及可用率。对于800 kV 特高压直流输电工程, 换流变电压等级高、容量大, 考虑到换流变的制造、安装和运输能力, 采用以上类型( 1) 、( 2) 或( 3) 均具有相当大的难度, 采用类型( 4) 是最为现实的, 因此, 为提高800 kV 特高压直流输电工程的可靠性和可用率, 要求这种变压器有较低的故障率和较少的修理时间。

  根据目前直流工程的研究成果, 交流滤波器组可能的接线) 交流滤波器分成四大组接入3/2 断路器接线) 交流滤波器小组直接接母线) 交流滤波器分成两大组, T 接每极换流变压器; ( 4) 交流滤波器小组直接接入3/2 断路器接线串中。从可靠性角度看, 方案( 4) 可靠性最高; 方案( 1)可靠性较方案( 4) 稍低, 该方案滤波器投切灵活, 且便于两极间的相互备用, 适应性好; 方案( 2) 接线会降低主母线) 为交流滤波器按极配置, 在国外一些工程中有运用, 其主要缺点是不便于交流滤波器两极间的相互备用, 而且增加了换流变压器进线故障的几率。从可靠性角度看, 首推方案( 4) , 但其投资太大, 目前很少采用。国内大多数直流输电工程采用可靠性高且投切灵活的方案( 1) 。

  阀的触发失败和误导通, 是由控制和触发设备的各种故障造成的。这些故障发生在逆变侧的概率更高, 并将导致更为严重的后果。

  换相失败, 是由于外部交流或直流电路条件的变化, 加之逆变器熄弧角预置控制不当造成的。交流电压偏低, 直流电流偏大, 都可能使得换相不能在足够的时间内完成。

  换流站内部短路, 此故障非常少见, 起因可能是接地开关误操作, 或绝缘老化和避雷器失效。

  若故障发生在整流侧, 则不需要采取比较特殊的控制措施, 而离逆变器足够近的故障将造成换相失败。

  据统计, 滤波回路中电容器的故障率与时间有关, 用于可用度计算的故障率为一年0.2%, 但期望值为0.05%, 保证值为0.1%。滤波器分组的停运不会导致强迫极停运, 或电能传输中断。因此滤波器对可靠度影响极小。

  直流线路故障比内部短路更为频繁, 现今几条重要高压直流输电系统的运行经验表明, 直流架空线接地故障是强迫停运的根本原因[4~6]。直流架空线故障的原因有雷击、滑坡、植物、风等。直流滤波器故障不会造成强迫极停运。

  由于不会触发跳闸信号, 控制设备故障对传输系统没直接影响, 因而不加考虑。但为避免备用耗尽, 控制和保护系统必须是“热维修”,“维修”包括故障电路板或插件的替换, 且没有额外的延时。

  计算开关设备的可用度时, 较为困难的是如何计算隔离开关的故障率。一方面, 绝大多数故障出现于配件箱和驱动系统, 然而这些故障并不会在正常运行时引发极停运, 因为此时不需要隔离开关动作。另一方面, 当出现开关命令而隔离开关无法遥控时,仍有可能用手动方式执行开关命令, 因而要区别隔离开关的静态故障率和动态故障率。动态故障率是隔离开关作为一个部件时的故障率; 而低得多的静态故障率只计及引起极停运的故障, 如引发接地故障的瓷套或焊点破裂。计算极停运时, 要考虑开关设备的静态和动态故障率。

  特高压换流站可靠性评估中, 主要考虑以下因素: ( 1) 考虑到设备实际运作情况, 模型仅包含双极正常运行、单极金属回路、单极大地回路运行方式。( 2) 对有旁路开关回路接线 脉动换流单元出现故障都可以独立退出而不影响别的设备的正常运行, 且不考虑设备过载运行允许增供的容量。但是当6 脉动桥故障退出运行时, 与之组成12 脉动换流单元的剩余桥必须同时退出。( 3) 忽略三重及三重以上故障事件。( 4) 考虑设备维护时出现故障情况。( 5) 考虑设施安装过程。( 6) 由于正常运行中, 刀闸S, Sp 均不动作, 故不考虑其故障影响。直流侧的滤波器、平波电抗器等设备可等效为一个极设备元件。

  EDSA 是一面向电力工程应用的专业软件。它主要由2 部分构成: 一是系统仿真图形绘制, 二是专业计算仿真分析。从功能上看, EDSA 能够实现各种各样的形式的短路计算、潮流计算、暂态分析、谐波分析和可靠性分析等诸多方面, 并提供了丰富的帮助文件。其中, 可靠性可以对配电系统、变电站做评估, 采用状态空间模型对设定的可靠性模型做多元化的分析计算。通过EDSA 可靠性计算, 可以直接得到某一负荷点的年故障次数、停运维持的时间、可靠度、年停电损失等。在此基础上可进一步计算得到其他可靠性指标。

  通过EDSA 对换流站主接线的可靠性进行了计算。通过综合分析国内运行数据及国外设备可靠性数据, 本计算采用表1 中数据作为计算依据。

  采用EDSA 可靠性软件包对双极12 脉动换流单元串联情况做了计算, 结果如表2、3。

其他产品
热门产品