Deprecated: Creation of dynamic property db::$querynum is deprecated in /www/wwwroot/hbjhkj123.com/inc/func.php on line 1413

Deprecated: Creation of dynamic property db::$database is deprecated in /www/wwwroot/hbjhkj123.com/inc/func.php on line 1414

Deprecated: Creation of dynamic property db::$Stmt is deprecated in /www/wwwroot/hbjhkj123.com/inc/func.php on line 1453

Deprecated: Creation of dynamic property db::$Sql is deprecated in /www/wwwroot/hbjhkj123.com/inc/func.php on line 1454
什么是KEYENCE光纤传感器建模和建模的重要性_屏蔽类电源滤波器_bob苹果手机登录版_半岛·BOB官方网站

什么是KEYENCE光纤传感器建模和建模的重要性

时间: 2024-11-10 00:06:25 |   作者: 屏蔽类电源滤波器

产品详情

  

什么是KEYENCE光纤传感器建模和建模的重要性

  在KEYENCE光纤传感器电子测量装置的电路中出现的、无用的信号称为噪声,当噪声影响电路正常工作时,该噪声就称为干扰。信号传输过程中干扰的形成一定要具有三项因素,即干扰源、干扰途径以及对噪声敏感性较高的接收电路。因此消除或减弱噪声干扰的办法能够针对这三项中的其中任意一项采取一定的措施。在传感器检验测试电路中很常用的方法,是对干扰途径及接收电路采取对应的措施以消除或减弱噪声干扰。下面介绍几种常用的、行之有效的抗干扰技术。

  利用金属材料制造成容器.将需要保护的电路包在其中,可以有很大效果预防电场或磁场的干扰,此种方法称为屏蔽。屏蔽又可分为静电屏蔽、电磁屏蔽和低频磁屏蔽等。

  根据电磁学原理,置于静电场中的密闭空心导体内部无电场线,其内部各点等电位。用这个原理,以铜或铝等导电性良好的金属为材料,制作密闭的金属容器,并与地线连接,把需要保护的电路值r其中,使外部干扰电场不影响其内部电路,反过来,内部电路产生的电场也不可能影响外电路。这种方法就称为静电屏蔽。例如传感嚣测量电路中,在电源变压器的一次侧和二次侧之间插入一个留有缝隙的导体,并把它接地,可以有效的预防两绕组之问的静电耦合,这种方法就属于静电屏蔽。

  KEYENCE光纤传感器对于高频干扰磁场,利用电涡流原理,使高频干扰电磁场在屏蔽金属内产生电涡流,消耗干扰磁场的能量,涡流磁场抵消高频干扰磁场,从而使被保护电路免受高频电磁场的影响。这种屏蔽法就称为电磁屏蔽。若电磁屏蔽层接地,同时兼有静电屏蔽的作用。传感器的输出电缆一般都会采用铜质网状屏蔽,既有静电屏蔽又有电磁屏蔽的作用。屏蔽材料一定要选择导电性能好的低电阻材料,如铜、铝或镀银铜等。

  干扰如为低频磁场,这时的电涡流现象不太明显,只用上述方法抗干扰效果并不太好,因此一定要采用采用高导磁材料作屏蔽层,以便把低频干扰磁感线限制在磁阻很小的磁屏蔽层内部。使被保护电路免受低频磁场耦合干扰的影响。这种屏蔽方法一般称为低频磁屏蔽。传感器检验测试仪器的铁皮外壳就起低频磁屏蔽的作用。若进一步将其接地,又同时起静电屏蔽和电磁屏蔽的作用。

  基于以上三种常用的屏蔽技术,因此在干扰非常严重的她方,能够使用复合屏蔽电缆,即外层是低频磁屏蔽层。内层是电磁屏蔽层.达到双重屏蔽的作用。例如电容式传感器在实际测量时其寄生电容是一定要解决的核心问题,否则其传输效率、灵敏度都要变低。必须对传感器进行静电屏蔽,而其电极引出线就采用双层屏蔽技术,一般称之为驱动电缆技术。用这种办法能够有效的克服传感器在使用的过程中的寄生电容。

  接地技术是抑制干扰的有效技术之一,是屏蔽技术的重要保证。正确的接地能够有效地抑制外来干扰,同时可提高检测系统的可靠性,减少系统自身产生的干扰因素。接地的目的有两个:安全性和抑制干扰。因此接地分为保护接地、屏蔽接地和信号接地。保护接地以安全为目的,传感器测量装置的机壳、底盘等都要接地。要求接地电阻在10 ?以下。屏蔽接地是干扰电压对地形成低阻通路,以防干扰测量装置。接地电阻应小于0.02 ?。

  信号接地是电子装置输入与输出的零信号电位的公共线,它本身可能与大地是绝缘的。信号地线又分为模拟信号地线和数字信号地线,模拟信号一般较弱,故对地线要求比较高:数字信号一般较强,故对地线要求可低一些。

  不同的传感器检验测试条件对接地的方式也有不同的要求,一定要选择合适的接地方法,常用接地方法有一点接地和多点按地。下面给出这两种不同的接地处理措施。

  在低频电路中一般建议采用一点接地,它有放射式接地线和母线式接地线路。放射式接地就是电路中各功能电路直接用导线与零电位基准点连接:母线式接地就是采用具有一定截面积的优质导体作为接地母线,直接接到零电位点,电路中的各功能块的地可就近接在该母线上。这时若采用多点接地,在电路中会形成多个接地回路,当频率低的信号或脉冲磁场经过这些回路时,就会引起电磁感应噪声,由于每个接地回路的特性不同,在不同的回路闭合点就产生电位差,形成干扰。为避免这样的一种情况,最好采用一点接地的方法。

  传感器与测量装置构成一个完整的检测系统,但两者之问可能相距较远。由于工业现场大地电流十分复杂,所以这两部分外壳的接大地点之间的电位一般是不相同的,若将传感器与测量装置的零电位在两处分别接地,即两点接地,则会有较大的电流流过内阻很低的信号传输线产生压降,造成串模干扰。因此这样的一种情况下也应该采用一点接地方法。

  高频电路一般建议采用多点接地。高频时,即使一小段地线也将有较大的阻抗压降,加上分布电容的作用,不可能实现一点接地,因此可采用平面式接地方式,即多点接地方式,利用一个良好的导电平面体(如采用多层线路板中的一层)接至零电位基准点上,各高频电路的地就近接至该导电平面体上。由于导电平面体的高频阻抗很小,基本保证了每一处电位的一致,同时加设旁路电容等减少压降。因此,这种情况耍采用多点接地方式。

  滤波器是抑制交流串模干扰的有效手段之一。传感器检验测试电路中常见的滤波电路有Rc滤波器、交流电源滤波器和真流电源滤波器。下面介绍这几种滤波电路的应用。

  当信号源为热电偶、应变片等信号变化缓慢的传感器时,利用小体积、低成本的无源Rc滤波器将会对串模干扰有较好的压制效果。但应该一提的是,Rc滤波器是以牺牲系统响应速度为代价来减少串模干扰的。

  电源网络吸收了各种高、低频噪声,对此常用Lc滤波器来抑制混入电源的噪声。

  直流电源往往为几个电路所共用,为了尽最大可能避免通过电源内阻造成几个电路问相互干扰,应该在每个电路的直流电源上加上Rc或Lc退耦滤波器,用来滤除低频噪声。

  KEYENCE光纤传感器中的弹性敏感元件,研究其在被测量作用下的力学行为:包括位移、应变、应力或者振动特性;

  KEYENCE光纤传感器敏感单元几何结构参数、物理参数、边界条件在内的,传感器弹性敏感元件的位移、应变、应力或者振动特性与被测量之间的函数关系,即敏感结构的力学和数学模型;

  不同于第二部分中的传感器特性(针对输入输出特性,相当于把传感器整体作为一个“黑匣子”,用来评估传感器总体性能。它不能告诉我们传感器敏感结构的几何参数、物理参数以及边界条件怎么样影响传感器的性能,自然也不会提供从传感器敏感结构的细节方面来改善其性能的办法。

  定量研究传感器一方面,传感器是多学科的密集技术,涉及的知识内容遍及许多基础科学和技术科学。各种敏感效应的传感器种类非常之多,被测参数、测量范围千差万别,敏感元件结构复杂多样

  KEYENCE光纤传感器的研究工作本身还具有很强的工程性,实用性。这要求传感器的建模也要充足表现这一点

  KEYENCE光纤传感器第一个阶段:由实际问题本质特征建立传感器物理模型。此阶段主要是针对传感器的基本工作原理进行。其特点是简洁、明确、反映了传感器的物理本质,模型中的每一项都具有鲜明的物理意义。

  KEYENCE光纤传感器第二个阶段:由传感器的物理模型建立其数学模型。此阶段主要是依据传感器的基本工作原理,针对传感器的敏感元件进行。其特点是包含了传感器的几何结构参数、物理参数、边界条件及其他约束条件;物理特征含蓄,具有较强的抽象性。

  KEYENCE光纤传感器第三个阶段:求解数学模型。物理模型的建立对传感器整个建模工作至关重要,它既依赖于对传感器工作机理的理解,又依赖于已有的实际在做的工作经验;数学模型的建立主要根据传感器相关的技术基础和数学基础,它是保证模型准确、可靠的关键;数学模型的求解直接影响到整个建模工作的成效和应用价值。

  凡本网标注明确来源:人机一体化智能系统网的全部作品,版权均属于人机一体化智能系统网,转载请一定要标注明确人机一体化智能系统网,。违反者本网将追究有关规定法律责任。

  企业发布的公司新闻、技术文章、资料下载等内容,如涉及侵权、违规遭投诉的,一律由发布企业自行承担相应的责任,本网有权删除内容并追溯责任。

  本网转载并注明自其它来源的作品,目的是传递更加多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵犯权利的行为的直接责任及连带责任。别的媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。

  如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

其他产品
热门产品